Swiss perspectives in 10 languages

Zurich nanoparticle breaks world rotation record

A vacuum apparatus
The vacuum apparatus in the centre of the picture contains the world’s fastest-rotating object. Inside it, a tiny glass particle is levitated and made to rotate by a laser beam. ETH Zurich / Michael Doderer

Researchers at the Swiss federal technology institute ETH Zurich have made a nanoparticle turn around its own axis a billion times per second. From such measurements of rotating particles, the scientists hope to obtain new insights into the behaviour of materials under extreme stress. 

Lukas Novotny and his ETHZ collaborators at the Institute for Photonics manipulated a minuscule piece of glass only a hundred nanometres in size – a thousand times smaller than a hair – in such a way as to make it turn around its own axis more than a billion times a second. The results of their research were recently published in the scientific journal Physical Review LettersExternal link

More

“We trap the glass particle in a vacuum apparatus using so-called optical tweezers,” explained René Reimann, a post-doc in Novotny’s laboratory. Optical tweezers are created by a strongly focused laser beam, where the glass particle is levitated by light forces at the focus of the beam. This allows the scientists to eliminate any direct mechanical contact with the outside world, which would lead to friction losses. 

What’s more, the pressure in the apparatus is a hundred million times lower than the normal air pressure at sea level. This means that only very rarely do single air molecules collide with the particle, slowing it down slightly in the process. 

One gigahertz

The team calculated that its rotation frequency was higher than a gigahertz (a billion rotations per second). “It probably turned even faster, but with our current photodetector we can’t measure any higher frequencies,” Reimann admitted. Buying a faster detector is, therefore, one of the researchers’ top priorities. 

For nanotechnology, such measurements are important because the properties of materials at the nanoscale can differ drastically from those of larger objects. That is partly due to the extreme purity of nanoparticles and the virtual absence of defects, the scientists said in a statement on Tuesday. 

Moreover, measurements at similarly high rotation frequencies would hardly be technically possible using larger objects. The challenge to make nanoparticles rotate ever faster, therefore, also has some practical relevance, they concluded.

Popular Stories

Most Discussed

News

No Swiss bank in phase with environmental objectives

More

Swiss banks failing environment, says WWF

This content was published on None of the 15 major Swiss retail banks is meeting international climate and biodiversity targets, according to a ranking by WWF Switzerland.

Read more: Swiss banks failing environment, says WWF
UNRWA provides emergency assistance to just over one million Palestine refugees, or about 75 per cent of all Palestine refugees in Gaza, who lack the financial means to cover their basic food.

More

Lazzarini: no alternative to UNRWA in Gaza

This content was published on The only alternative to the UN Palestinian agency’s work in Gaza is to allow Israel to run services there, Philippe Lazzarini, UNRWA Commissioner-General, told reporters in Geneva on Monday.

Read more: Lazzarini: no alternative to UNRWA in Gaza

In compliance with the JTI standards

More: SWI swissinfo.ch certified by the Journalism Trust Initiative

You can find an overview of ongoing debates with our journalists here . Please join us!

If you want to start a conversation about a topic raised in this article or want to report factual errors, email us at english@swissinfo.ch.

SWI swissinfo.ch - a branch of Swiss Broadcasting Corporation SRG SSR

SWI swissinfo.ch - a branch of Swiss Broadcasting Corporation SRG SSR