Researchers in Switzerland have demonstrated a way to help three male paraplegic patients walk again through highly targeted electrical stimulation of the spinal cord using a wireless implant.
With time and therapy, the patients, who had each suffered a spinal cord injury, were able to walk independently using a walker or other support system with the help of the electrical stimulation. They were also able to control previously paralysed leg muscles even without the electrical stimulation.
The research, by scientists at the Swiss Federal Institute of Technology in Lausanne (EPFL), the University of Lausanne (UNIL) and the Lausanne University Hospital (CHUV), has been published in two studies in the journals NatureExternal link and Nature NeuroscienceExternal link.
‘As precise as a Swiss watch’
According to an EPFL press release on Wednesday, the STIMO method (Stimulation Movement Overground) presents a novel approach to recovery from spinal cord injury that, unlike other similar studies on the subject, allows neurological function to continue even after the electrical stimulation is stopped. This could be due to the fact that the precisely targeted and timed bursts of electrical stimulation aided the patients’ movement without getting in the way of sensory signals coming from their legs, the researchers theorised.
“The targeted stimulation must be as precise as a Swiss watch. In our method, we implant an array of electrodes over the spinal cord which allows us to target individual muscle groups in the legs,” said study author and CHUV neurosurgeon Jocelyne Bloch, who surgically placed the implants in the patients.
“Selected configurations of electrodes are activating specific regions of the spinal cord, mimicking the signals that the brain would deliver to produce walking,” she said.
“All three study participants were able to walk with body-weight support after only one week of calibration, and voluntary muscle control improved tremendously within five months of training”, added study author and EPFL neuroscientist Grégoire Courtine. “The human nervous system responded even more profoundly to the treatment than we expected.”
Accessible treatment
The researchers noted that their method had been made possible through years of research using animal models, which allowed them to figure out how to mimic the way the brain naturally stimulates the spinal cord with the implants. They now hope to turn their findings into tailored neurotechnology that can be used to treat patients in hospitals and clinics through the start-up GTX medical.
“We’re building next-generation neurotechnology that will also be tested very early post-injury, when the potential for recovery is high and the neuromuscular system has not yet undergone the atrophy that follows chronic paralysis. Our goal is to develop a widely accessible treatment,” Courtine said.
Popular Stories
More
Life & Aging
Zurich: how the world capital of housing shortages is tackling the problem
In Switzerland more people are being referred to electrical therapies or psychedelic-assisted psychotherapy. Are there similar approaches where you live?
Is your place of origin, your Heimatort, important to you?
Every Swiss citizen has a Heimatort, a place of origin, but many have never visited theirs. What’s your relationship with your Heimatort? What does it mean to you?
Record number of home office jobs advertised in Switzerland
This content was published on
More jobs with the option of flexible working are being advertised in Switzerland than ever before, according to a study.
Swiss companies urged to improve accident prevention
This content was published on
On World Day for Safety and Health at Work, Suva, the Swiss national accident insurance fund, is calling on companies to strengthen their prevention culture.
Francesca Torrani voted Swiss Journalist of the Year
This content was published on
Francesca Torrani has been voted Swiss Journalist of the Year for her radio reports on the people in canton Ticino and their lives.
This content was published on
Traffic jams stretching for kilometres continued to build up in front of the two portals of the Gotthard road tunnel in Switzerland on Sunday.
If you want to start a conversation about a topic raised in this article or want to report factual errors, email us at english@swissinfo.ch.
Read more
More
Getting back on your feet one step at a time
This content was published on
Look around and you will certainly find reports about paraplegics getting around thanks to so-called exoskeletons. Last year, Claire Lomas finished the London marathon wearing a bionic suit, albeit 16 days after the race began. The electronic gear helping her along was worth £43,000 (CHF63,000 at the time) – and cost is one of the…
Brain-computer system allows ‘locked-in’ patients to communicate
This content was published on
Patients with ‘locked-in’ syndrome have been able to communicate with relatives through a newly developed brain-computer interface.
Paralysed monkeys walk again with wireless ‘brain-spine interface’
This content was published on
The scientists, who treated the monkeys with a neuroprosthetic interface that acted as a wireless bridge between the brain and spine, say they have started small feasibility studies in humans to test some components. “The link between the decoding of the brain and the stimulation of the spinal cord – to make this communication exist…
You can find an overview of ongoing debates with our journalists here . Please join us!
If you want to start a conversation about a topic raised in this article or want to report factual errors, email us at english@swissinfo.ch.